Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
How to Position Your Gateway for Failure:The Ten Don’ts of Gateway DesignAbstractScience gateways are accelerators for science and education, providing user-friendly access to powerful computational resources and data analysis tools. Sustained science gateways frameworks such as Hubzero, Tapis, and Galaxy demonstrate the potential for gateways to revolutionize scientific exploration.However, despite initial promise, many gateway projects struggle to transition from prototypes to sustainable, long-term services. Well-intentioned, yet ultimately unsuccessful, gateways are part of the scientific landscape. This raises a critical question: what factors contribute to the demise of science gateways, and how can we avoid these pitfalls to ensure the success of future endeavors?This paper delves into the ten most common pitfalls that lead to science gateway failure. By analyzing these roadblocks, we aim to equip new and developing gateway initiatives with suggestions for long-term success. Our research draws on the collective experiences of numerous gateway projects.We identified critical areas where focused attention and strategic planning are essential. This knowledge will enable the development of good practices that nurture vibrant gateway communities and ensure the long-term sustainability of these valuable research tools.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Community growth is one of the cornerstones contributing to the sustainability of a science gateway. Achieving community growth requires careful planning and a multifaceted approach. The Science Gateways Community Institute (SGCI) and the Center of Excellence for Science Gateways (SGX3) offer services such as UX advice, sustainability training via the Focus Week, and an annual conference to support the science gateway community with developers and users. This panel will discuss four successful use cases – QUBES, MyGeoHub, CHEESE, and the Hawaii Behavioral Health Dashboard – where the teams utilized various SGCI/SGX3 services, which significantly contributed to their community growth. The discussion will highlight specific strategies and outcomes from these use cases, providing valuable insights into the effective practices that drive community engagement and sustainability in science gateways. Additionally, panelists will share lessons learned and good practices that can be applied to other science gateways seeking to enhance their community presence and impact.more » « less
-
The Koa ecosystem is a comprehensive computational ecosystem built on open source software and developed by the University of Hawai‘i to enhance data-intensive research across its campuses. The Koa ecosystem addresses critical needs for computational resources, high-performance storage, and sustainable infrastructure to support multiple scientific disciplines. Over two years, the Koa ecosystem has significantly boosted research output, as evidenced by numerous publications acknowledging it and the research community’s continued investment in expanding the resource.more » « less
-
The Cyberinfrastructure Training and Capacity Building in Climate and Environmental Sciences (CI-TRACS) program represents a pioneering initiative aimed at enhancing cyberinfrastructure proficiency within Hawaii’s academic community. This paper outlines the program’s comprehensive strategy, which integrates curriculum development, hands-on workshops, and professional growth opportunities to cultivate a robust foundation in CI practices. The initiative’s core objective is to elevate CI literacy, promote cross-disciplinary cooperation, and endorse the principles of open science. Significant contributions from the CI-TRACS program include a suite of educational materials and resources tailored for integration into higher education syllabi. Collaboration with the Hawaii Data Science Institute has been instrumental in nurturing a burgeoning network of data science professionals. The CI-TRACS program is instrumental in realizing the shared vision of equipping Hawaii’s emerging workforce with the sophisticated CI skills necessary to navigate and excel in the evolving landscape of climate and environmental sciences.more » « less
-
Abstract The Hawai‘i Climate Data Portal (HCDP) is designed to facilitate streamlined access to a wide variety of climate data and information for the State of Hawai‘i. Prior to the development of the HCDP, gridded climate products and point datasets were fragmented, outdated, not easily accessible, and not available in near–real time. To address these limitations, HCDP researchers developed the cyberinfrastructure necessary to 1) operationalize data acquisition and product production in a near-real-time environment and 2) make data and products easily accessible to a wide range of users. The HCDP hosts several high-resolution (250 m) gridded products including monthly rainfall and daily temperature (maximum, minimum, and mean), station data, and gridded future projections of rainfall and temperature. HCDP users can visualize both gridded and point data, create and download custom maps, and query station and gridded data for export with relative ease. The “virtual station” feature allows users to create a climate time series at any grid point. The primary objective of the HCDP is to promote sharing and access to data and information to streamline research activities, improve awareness, and promote the development of tools and resources that can help to build adaptive capacities. The HCDP products have the potential to serve a wide range of users including researchers, resource managers, city planners, engineers, teachers, students, civil society organizations, and the broader community.more » « less
-
Science gateways have gained a lot of traction in the last twenty years, as evidenced by projects such as the Science Gateways Community Institute (SGCI) and the Center of Excellence on Science Gateways (SGX3) in the US, The Australian Research Data Commons (ARDC) and its platforms in Australia, and the projects around Virtual Research Environments in Europe. A few mature frameworks have evolved with their different strengths and foci and have been taken up by a larger community such as Hubzero, Tapis, and Galaxy. However, even when gateways are built on successful frameworks, they continue to face the challenges of ongoing maintenance costs and how to meet the ever-expanding needs of the community they serve with enhanced features. It is not uncommon that gateways with compelling use cases are nonetheless unable to get past the prototype phase and become a full production service, or if they do, they don't survive more than a couple of years. While there is no guaranteed pathway to success, it seems likely that for any gateway there is a need for a strong community and/or solid funding streams to create and sustain its success. With over twenty years of examples to draw from, we present in this paper ten factors common to successful and enduring gateways that effectively serve as best practices for any new or developing gateway.more » « less
-
The C-MĀIKI gateway is a science gateway that leverages a computational workload management API called Tapis to support modern, interoperable, and scalable microbiome data analysis. This project is focused on migrating an existing C-MĀIKI gateway pipeline from Tapis v2 to Tapis v3 so that it can take advantage of the new robust Tapis v3 features and stay modern. This requires three major steps: 1) Containerization of each existing microbiome workflow. 2) Create a new app definition for each of the workflows. 3) Enabling the ability to submit jobs to a SLURM scheduler inside of a singularity container to support the Nextflow workflow manager. This work presents the experience and challenges in upgrading the pipeline.more » « less
-
In collaboration with the Center for Microbiome Analysis through Island Knowledge and Investigations (C-MĀIKI), the Hawaii EPSCoR Ike Wai project and the Hawaii Data Science Institute, a new science gateway, the C-MĀIKI gateway, was developed to support modern, interoperable and scalable microbiome data analysis. This gateway provides a web-based interface for accessing high-performance computing resources and storage to enable and support reproducible microbiome data analysis. The C-MĀIKI gateway is accelerating the analysis of microbiome data for Hawaii through ease of use and centralized infrastructure.more » « less
An official website of the United States government
